
Introduction

The operation of a wastewater treatment plant 
(WWTP) is a very complicated process in which the 
bioreactor’s technological parameters must be maintained 
within an appropriate range so that the required effect 
of pollutant reduction can be achieved. Observations of 
the treatment facility operation, and of the processes that 
occur in the activated sludge made it possible to define the 

parameters for sludge evaluation and design. According to 
the literature review, the key parameters include the food-
to-mass ratio (F/M) and the activated sludge age (ASA) 
[1-2]. The F/M value should be treated as a factor that 
reduces the purifying effect of the activated sludge. This 
effect can be expressed as the load of the organic substance 
to be decomposed (Q·BOD5, where Q is wastewater 
inflow and BOD5 is biochemical oxygen demand), which 
is delivered into the aeration tank (AT) and which needs to 
be removed using a certain amount of sludge (MLSS·VAT, 
where MLSS is mixed-liquor suspended solids in AT 
having a volume of V). Depending on the task posed, the 
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mode of operation of the treatment facility can be adjusted 
to produce simple or complex symbiosis of organisms. 
The processes in the facility can be designed in such a 
manner that they lead to either self-purification (i.e., the 
organic substance degradation by microorganisms) or to 
complete oxidation of the organic substance contained in 
the wastewater. Consequently, systems can be categorised 
as having low and high F/M ratios. In low F/M systems, 
F/M varies in the range 0.05-0.20 gBOD5/MLSS·d and the 
sludge undergoes aerobic treatment, in which compounds, 
newly created and stored in the microorganism cells, are 
oxidized. In high-load systems, F/M value ranges 0.4÷1.5 
gBOD5/gMLSS·d and the sludge needs to be subjected to 
anaerobic treatment. In the case of wastewater treatment 
systems intended to remove organic compounds, nitrogen, 
and phosphorus from the wastewater, F/M should 
not exceed the value of 0.10 gBOD5/gMLSS·d [3-4]. 
However, if F/M values are below 0.05 gBOD5/gMLSS·d, 
sludge sedimentation problems caused by filamentous 
microorganisms can arise [5-6].

Numerous investigations and tests performed at 
wastewater treatment plants [1-2] confirm the considerable 
impact of F/M ratio on the activated sludge age. The latter 
determines the time microorganisms stay in the bioreactor. 
In practice, this time is calculated as the quotient of the 
amount of the excess sludge (WAS) removed from AT 
and the total amount of sludge in the tank (MLSS·VAT). 
For WWTP operation, it is important that the F/M ratio 
would not be higher than the ability of microorganisms to 
metabolize the wastewater pollutants. On the other hand, 
the F/M ratio must not be too low because that can lead 
to a situation when endogenous respiration outperforms 
the catabolism of the external carbon sources, and 
consequently, to biomass extinction. On the basis of the 
above observations, it can be concluded that to obtain the 
required effect of the reduction of biogenic compounds in 
the wastewater, the values of the activated sludge age and 
F/M ratio should remain within the defined range. That, 
however, is not easy to achieve due to the fact that the 
wastewater inflow (Q) and biochemical oxygen demand 
(BOD5) are stochastic in character. Abnormal events like 
heavy rainfalls, sudden inflow of wastewater with low 
carbon content into the sewage system, and others make 
it difficult to keep the F/M values within the range that 
ensures the proper operation of the treatment facility [7-
8]. In order to obtain a high level of pollutant reduction 
and to increase the efficiency of the WWTP operation, it is 
necessary to model Q and BOD5 variables sufficiently in 
advance. This will offer the WWTP operator the possibility 
of specifying the right value of MLSS by regulating 
the rate of sludge recirculation, the concentration of 
recirculated sludge, the amount of the removed excess 
sludge, etc. To increase F/M value, it is possible to use 
supplemental external carbon sources, i.e., methanol, 
ethanol, wastewater leachate, and others. 

The literature review [9-11] shows that data mining 
methods are used to model the amount and quality of 
wastewater influent, and also the operation of bioreactors. 
These include, among others, artificial neural networks, 

support vector machines, random forests, boosted trees, 
and k-nearest neighbour [12-14]. In the methods, at the 
training stage, the model structure is formulated based  
on historical data on different input variables. The 
structure is decisive for the quality of model output. The 
analysis of the available literature [9, 15-16] demonstrates 
that the modelling of wastewater influent by means 
of the data mining methods is relatively easy, and the 
statistical models show satisfactory predicting abilities, 
which is indicated by the values of mean absolute 
and relative errors. In order to determine the mixed 
liquor suspended solids (MLSS), the values of several 
parameters describing wastewater quality (including 
BOD5, COD, TSS, NH4

+) and technological parameters 
of the bioreactor operation (recirculation rate, recirculated 
sludge concentration, amount of excess sludge removed, 
sludge temperature, pH, etc.) have to be known [17]. In 
modern treatment facilities, the AT operational parameters 
are monitored online. Conversely, a majority of influent 
wastewater quality indicators are laboratory determined, 
which generates high costs. Additionally, some technical 
problems concerning parameter determination can arise. 
Biochemical oxygen demand determination is particularly 
problematic as it takes as long as five days.   

This paper presents the methodology of modelling the 
mixed liquor suspended solid and F/M ratios. The statistical 
models for the predictions of the wastewater influent (Q), 
biochemical oxygen demand (BOD5), and mixed-liquor 
suspended solids (MLSS) were developed. Due to the 
fact that BOD5 determination is difficult to perform, the 
possibility of predicting this wastewater quality index using 
the wastewater influent and the COD data was analysed. 
To determine MLSS, the measurements of BOD5, COD, 
TSS, TN, and NH4

+, and also of the bioreactor operational 
parameters (recirculation rate, sludge pH and temperature, 
and amount of excess sludge removed) were applied. 
Because of high costs of determining wastewater quality 
indicators, the possibility of predicting those quantities on 
the basis of the flow rate recorded in the last measurements 
was taken into account. The analyses performed for this 
paper made it possible to assess the impact of errors of 
wastewater quality prediction on the results of modelling 
of the F/M ratio and MLSS.

Object of Investigation

The object investigated is the WWTP located in the 
commune of Sitkówka-Nowiny. The plant collects sanitary 
wastewater from the city of Kielce, the commune of 
Sitkówka-Nowiny, and partially also from the commune 
of Masłów. The design capacity of the treatment plant 
is 72,000 m3/d, and it is capable of serving a population 
equivalent (P.E.) of 275,000. The influent wastewater is 
mechanically pre-treated using bar screens and aerated 
grit chambers, with grease separators. Next, wastewater 
is pumped to four primary clarifiers, from which it is 
delivered to the biological unit (i.e., a bioreactor with 
separate denitrification and nitrification tanks, Fig. 1. In 
preliminary denitrification tanks, into which the activated 
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sludge is recirculated, partial removal of nitrogen 
compounds occurs. Afterward, wastewater is conveyed 
to dephosphatation tanks for the removal of phosphorus 
compounds. Then wastewater together with activated 
sludge is transferred to four secondary clarifiers, from 
which after clarification it flows to the receiving water, 
i.e., the Bobrza River. Continuous monitoring conducted 
by the company Wodociągi Kieleckie Sp. z.o.o. at the 
treatment plant since 2012 provides measurements of 
parameters describing influent wastewater quantity and 
quality, and also operational parameters of the aeration 
tanks. 

Methodology

In this study, statistical models were developed 
for predicting MLSS and F/M ratio. MLSS and F/M 
simulations were performed using a few variants. In the 
first variant, the MLSS prediction was considered, based 
on the influent quantity and quality, and also the bioreactor 
technological parameters. The general formula of this 
model variant can be written as follows:

  
(1) 

…where BOD5 is biological oxygen demand, COD is 
chemical oxygen demand, TN is total nitrogen, NH4

+ is 
ammonia nitrogen, TSS is total suspended solids, Q is 
daily wastewater inflow, RAS is return activated sludge, 
and WAS is waste activated sludge. 

For subsequent analyses, due to the problems related to 
the measurements of wastewater quality indicators and the 
necessity of ensuring high efficiency of the aeration tank 
in case of the measurement system failure, the possibility 
of substituting the actual values of BOD5, COD, TN, NH4

+, 
TSS, and also Q and Tsl with the results of the computations 
of those values was taken into account. It was analysed 
whether the wastewater quality indicators mentioned above 
could be predicted on the basis of flow data. Additionally, 
because BOD5 value determination is time-consuming 
and troublesome, the prediction of this indicator was 
based exclusively on COD(t), and also COD(t) and Q(t). 
For selected wastewater quality indicators, the statistical 
models for MLSS value prediction, in which Q and Tsl are 
modelled, could be expressed with a general formula:

   (2)

…where i and k are the time shift between the predicted 
value of activated sludge flow/temperature at the instant t, 
and the successive independent variables of the modelled 
quantity; i = 1, 2, 3…m, m = 7; k = 1, 2, 3… p = 7; and 
C(t)j,pred is computed values of the wastewater quality 
indicators of concern based on the following dependence:  

   (3)

…and, additionally, for  the value of BOD5:

  (4)

       (5) 

…where j is the number of wastewater quality indicators 
analysed (BOD5, COD, TN, NH4

+, TSS), j = 5, and m is 
the time shift between the modelled value of the selected 
quality indicator and the last independent variable of the 
given indicator-predicted magnitude. 

The next stage involved the development of the 
statistical models for determining F/M of activated sludge 
based on the following equation: 

          (6)

…where MLSS(t)pred is MLSS predicted on the basis 
of Eqs. (1) and (2); BOD5,pred(t) is modelled values of 
biochemical oxygen demand based on dependences (3÷5), 
and Q(t)pred is predicted inflow to WWT based on the value 
of Q(t-i).                                               

The analyses presented above are intended to 
demonstrate the possibility of modelling F/M values on 
the basis of the data on wastewater quality, temperature, 
and inflow. In everyday operation of the treatment facility, 
such analyses are important because they make it possible 
to reduce the number of variables that should be measured 
in the influent wastewater to determine the F/M ratio. 
Additionally, the statistical models for the prediction of 
the F/M ratio take into account the operational parameters 

Fig. 1. Technological diagram of the Sitkówka-Nowiny treatment plant.
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of the bioreactor (recirculation rate) selected by the facility 
staff. As a result, the model facilitates the control of those 
parameters in advance so that the optimal operation of the 
facility could be ensured.

In this paper, MARS and ANN methods were applied 
to model the C(t), Q(t), Tsl(t), and MLSS(t) variables. In 
subsequent simulations, the computational results for 
which the predictions that showed best fit to measurement 
data were used. Before the start of the modelling, the 
measurement data were standardized using the min-max 
transformation:   

                    (7)

…where Āi is normalized value of i-th element in set A, 
Ai is measured value of i-th element in set A, max A is 
maximum value of the elements in set A, and min A is 
minimum value of the elements in set A.

The ANN methods are widely applied as they can be 
used to simulate linear and nonlinear processes, as well 
as to solve the tasks of optimization, classification, and 
control [11-12, 16]. The multilayer perceptron (MLP) 
is the most commonly used structure of neural network. 
In the MLP, the input signals are multiplied by weight 
values, and afterward transferred to the neurons of the 
hidden layer. In the individual neurons, the summation 
occurs. The sums received are then transformed using 
a linear or nonlinear activation function and transferred 
to the output neurons. The optimal values of weights for 
individual neurons are determined by training.

With respect to the prediction of MLSS, activated sludge 
temperature and wastewater quality indicators  (BOD5, 
COD, TSS, TN, NH4

+) recommendations for selecting 
the neural structure are not available. Consequently, the 
automatic designer function of the STATISTICA program 
was used. Five-hundred different neural networks were 
generated for the prediction of each of the quantities 
mentioned above and the parameters of computations fit to 
measurement data were given. The optimal model that was 
selected was this neural network for which the computed 
error values (MAE, MAPE) were the lowest among all 
500 ANN models. It was assumed that the minimum 
number of neurons in the hidden layer was equal to five 
neurons and maximum was equal to 20 neurons. In the 
hidden neuron layer and the output layer, the following 
activation functions were considered: hyperbolic tangent, 
logistic, sine, and exponential. To make the training, it was 
partitioned into the training set (75%), and the testing set 
(25%). Based on the measurement results, it was found 
that the training set and the testing set each comprise 250 
values process correct, and then to properly assess the 
performance of the statistical models applied, the dataset 
of MLSS, F/M, and wastewater quality indicators (BOD5, 
COD, TN, NH4

+, and TSS). The datasets, each including 
1,250 values, provided a basis for the development of  
the models for the prediction of daily wastewater  
inflow and activated sludge temperature. In the 
computations, the data for the training set and the testing 

set were selected randomly. The neural network training 
was implemented using the Broyden-Fletcher-Goldfarb-
Shanno algorithm. 

The multivariate adaptive regression splines 
(MARS) method is one of numerous tools used for data 
exploration [18-19]. It constitutes an extension of the 
classical approach to predictors in regression models. In 
the classical approach, independent variables are treated 
uniformly, whereas in the MARS method, variation ranges 
of the input data of concern are divided into subranges in 
which independent variables can have different impacts 
on the process investigated. The boundaries of subranges 
are determined on the basis of threshold values (t). That 
means  different weights or signs can be attributed to a 
variable in the model, depending on whether the variable 
in question is below or above the value of (t). The 
differentiation of independent variables into lower and 
higher than the threshold values (ti) is performed using the 
following basis function:

       (8)

…where h(X) is the vector of basis functions for individual 
variables (xi) for which the condition: 

      (9)

is fulfilled.
In the MARS method, the regression relationship is a 

spline function obtained from a linear combination of the 
product of basis functions and weights:

    (10)

…where X = [x1, x2, …, xi] – vector of input data, αm is 
values of weights, and hm is basis functions.

To determine the model parameters, a special algorithm 
was developed to search the observation space in order 
to compute the threshold values (nodes). The algorithm 
uses the recursive partitioning of the feature space and 
it comprises two stages that occur alternately until the 
stopping criterion is satisfied. The criterion constitutes the 
value of generalized error in five-fold cross-validation [20]. 
In the first stage of the algorithm, the model complexity is 
enhanced by adding basis functions until the maximum 
function number, set by the user, is reached. In the second 
stage of the algorithm, the procedure of elimination from 
the model (pruning) of the least important basis functions 
it started. Thus, independent variables whose removal 
causes the smallest decrease in predictive abilities of the 
model are eliminated.

The following error formulas were applied to assess 
predictive abilities of the models employed to forecast 
the daily wastewater inflow, chemical and biological 
oxygen demands, total suspended solids, total nitrogen 
and ammonia nitrogen, activated sludge temperature, and 
mixed liquor suspended solids:
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 – Mean absolute error (MAE)

      (11)
   
 – Mean relative error (MAPE)

  
(12)

… where yi,obs,pred is measured and calculated concentration 
values, respectively, and n is dataset size.

results

This study concerns the statistical models developed 
for the prediction of wastewater quantity, quality, and 
operational parameters of the bioreactor. It is therefore 
necessary to determine the range of variation of para-
meters (Table 1) in which those models can be employed. 
The data in Table 1 show that the indicators of quan- 
tity and quality of the influent wastewater varied  

substantially. That led to changes in MLSS and, conse-
quently F/M in the aeration tank. For instance, in the  
time period of concern, the BOD5 parameter ranged 
127÷557 mg/dm3, the wastewater inflow varied from 
32,564 m3/d up to 86,592 m3/d, and MLSS changed in 
the range of 1.97÷6.59 kg/m3. A significant variation 
in the F/M ratio values (0.03÷0.07 g BOD5/gMLSS·d) 
substantiates the need for its modelling in order to 
improve the efficiency of the wastewater treatment facility 
operation.

As in the MARS model, the algorithm for parameter 
estimation allows for the removal of independent variables 
that have a negligible effect on the dependent variable. 
Therefore, using the MARS method, first the independent 
variables of the modelled wastewater quality indicators 
(BOD5, COD, TN, NH4, and TSS) daily inflow to WWTP 
and the activated sludge  temperature were identified. 
Next, the statistical models, based on MARS and ANN 
methods, were developed for the prediction of the above-
mentioned variables found in Eq. (1). 

First, based on the results of analyses carried out with 
the MARS method, variables were identified and statistical 
models for the prediction of daily wastewater inflow and 
the sludge temperature in the aeration tank were designed. 
The results of computations carried out with the methods 
employed in the study are presented in Table 2. As regards 
the model predicting Q(t) and Tsl(t), it is sufficient to have 
the values Q(t-1) and Tsl(t-1), and in both cases the number 
of basis functions for which the results are best fitted to 
measurements is three. On that basis, ANN models for the 
prediction of Q(t) and Tsl(t) were developed. The models 
relied on the values of independent variables obtained 
using the MARS method. The computations performed 
with the ANN method show that the lowest values 
of errors of Q(t) prediction where obtained when the 
number of neurons in the hidden layer was four, and the 
activation function took the form of hyperbolic tangent. 
Additionally, the lowest Tsl(t) prediction error was found 
for the model, in which the number of neurons in the 
hidden layer was five, and the  activation function was a 
sine dependence. The results (Table 2) indicate that the 
ANN method produced lower values of mean absolute and 
relative errors than was the case with the MARS method. 
For the first method, the values of Q prediction errors were  
MAE = 3,037m3/d and MAPE = 7.24%, and for the second 
one MAE = 3,050m3/d and MAPE = 7.95%. As regards 
Tsl predictions, the respective values were MAE = 0.92ºC, 
MAPE = 6.08%, and MAE = 0.96ºC, MAPE = 6.26%.

Variable Minimum Average Maximum

Q (m3/d) 32,564 40,698 86,592

Tsl (ºC) 10.0 15.9 23.0 

pH 7.00 7.6 8.1

MLSS (kg/m3) 1.97 4.26 6.59

RAS (%) 44.6 90.70 167.6

WAS (kg/d) 3,489 11,123 19,194

F/M (gBOD5/gMLSS·d) 0.03 0.07 0.13

BOD5 (mg/dm3) 127 309 557

COD (mg/dm3) 384 791 1250

TSS (mg/dm3) 126 329 572

TN (mg/dm3) 39.9 77.7 124.1

NH4
+ (mg/dm3) 24.4 49.31 65.9 

Table 1. Range of variation of parameters describing wastewater 
inflow (Q), wastewater quality (BOD5, COD, TSS, TN, NH4

+), 
and bioreactor operation (Tsl, pH, MLSS, RAS, WAS, F/M).

Variable

ANN MARS

Training Testing Training Testing

MAE MAPE MAE MAPE MAE MAPE MAE MAPE

(m3/d) (%)  (m3/d) (%)  (m3/d)  (%)   (m3/d)  (%) 

Q 2956 6.48 3037 7.24 3004 7.11 3050 7.95

Tsl 0.87 5.32 0.92 6.08 0.92 5.87 0.96 6.26

Table 2. Parameters of fit of Q and Tsl computations with MARS and ANN methods to the results of measurements.
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The next stage involved the development of the 
statistical models, based on MARS and ANN methods, 
for the prediction of MLSS. The models relied on the 
independent variables found in Eq. (1), which included 
the wastewater amount and quality indicators, and also 
the  bioreactor operational parameters. The computation 
results are shown in Table 3. In the model obtained 
with the MARS method, the number of basis functions 
was equal to 14. Computations carried out by using the  
ANN method showed that among 500 generated neural 
networks structures, the one with 12 neurons in the  
hidden layer and with the exponential activation function 
of the hidden layer and linear activation function of  
the output layer produced the best results. The data  
in Table 3 indicate that the statistical model for the  
MLSS prediction based on the ANN method has  
slightly better predictive abilities (lower MAE, MAPE) 
than the one developed using the MARS method. In the 
first case, values of mean absolute and relative errors 
were MAE = 0.46 kg/m3 and MAPE = 11.81%, and in the 
second case MAE = 0.52 kg/m3 and MAPE = 13.03%. 

The models for MLSS(t) (Eq.1) prediction make 
it possible to simulate this technological parameter in 
time t with satisfactory accuracy, which is confirmed by 
computed values of MAE and MAPE (Table 3). However, 
for bioreactor operation optimization it is necessary 
to predict MLSS in advance, not just simulate MLSS 
at the instant of t. Earlier predictions allow pre-setting 
MLSS and RAS. Additionally, the variables taken into 
account in the model were wastewater quality indicators, 
the measurements of which are costly and not always 
possible to take. Consequently, it was decided to simulate 
wastewater quality indicators (BOD5, COD, TSS, TN, 
NH4

+) in time t on the basis of wastewater inflow values 
obtained from previous measurements. Using the MARS 
method, independent variables Q(t-i) for wastewater 
quality indicators were identified, and consequently 
regression models were developed. On the basis of 
computations, the parameters of the neural network 
structures and of the fit of computation results, obtained 
for MARS and ANN methods, to measurement data were 
listed. They are presented in Tables 4 and 5. Simulation 
of the influent wastewater quality indicators based on 
the inflow to the WWTP, performed using the MARS 
method, showed that independent variables of wastewater 
quality indicators, i.e. BOD5, COD, and TSS are Q(t-1), 

Q(t-2) and Q(t-3) values. For the other cases, i.e., TN and 
NH4

+, those variables are Q(t-1) and Q(t-2) quantities. In 
the MARS-based models, the number of basis functions 
ranged 3÷6. In the ANN-based models, the number of 
neurons in the hidden layer varied from 4 up to 6, and the 
activation functions of the hidden and output layers were 
most often hyperbolic tangents (Table 4).

The results of computations (Table 5) show that  
with respect to wastewater quality indicators, the ANN 
method performed slightly better (lower values of  
MAE, MAPE) than the MARS method. For instance, the 
MARS-based model for COD prediction generated mean 
absolute and relative errors MAE = 119.52 mg/dm3 and 
MAPE = 16.17%, whereas for the ANN-based model 
those were MAE = 110.46 mg/dm3 and MAPE = 14.97%. 
As regards the BOD5 prediction models, the lowest 
error values were found for the models in which input 
variables were the influent wastewater quantities (Eq. 3) 
from the last three measurements. The error values were 
as follows: MAE = 38.94 mg/dm3 and MAPE = 13.66% 
for the ANN method, and MAE = 47.0 mg/dm3 and 
MAPE = 17.20% for the MARS method. Conversely, the 
highest error values in the BOD5 prediction were obtained 
for the models in which the input variables were the  
COD measurements (Eq. 5). Then the error values were 
MAE = 54.93 mg/dm3 and MAPE = 19.84% for the ANN 
method, and MAE = 62.89 mg/dm3 and MAPE = 22.95% 
for the MARS method. 

The results of simulation of quality indicators (BOD5, 
COD, TSS, TN, NH4

+), the amount of wastewater (Q), 
and the bioreactor operation (Tsl, pH, RAS, WAS) were 
taken into account when designing the ANN-based  
model for MLSS(t) prediction. In the next stage,  
MLSS was determined on the basis of Formula (2), while 
taking into account dependences (3-5). The next step 
involved F/M computations using Formula (6). Based  
on the computations, the parameters of fit of MLSS  
and F/M simulations to the measurement results were 
specified (Table 6). In addition, MLSS and F/M values 
measured at a week’s interval and the ones computed  

Method

Training Testing

MAE MAPE MAE MAPE

(kg/m3) (%) (kg/m3)  (%)

MARS 0.47 12.52 0.52 13.03

ANN 0.38 10.07 0.46 11.81

Table 3. Parameters of fit of mixed liquor suspended solid 
(MLSS) computations with MARS and ANN methods to the 
results of measurements.

Quality indicators

Number of 
neurons in 
the hidden 

layer

Activation 
function of 
the hidden 

layer

Activation 
function of 
the output 

layer

BOD5 = f(Q(t-i)) 5 tanh tanh

BOD5 = f(COD(t)) 6 logistic exp

BOD5 = 
f(COD(t),Q(t)) 5 tanh tanh

COD 4 exp tanh

TSS 5 logistic exp

NH4
+ 6 tanh exp

TN 4 exp linear

Table 4. Parameters describing the structures of the ANN models 
for the prediction of wastewater quality indicators.



2237A data mining Approach...

for the period of concern were compared in Figs 2 and 3. 
The comparison was made for the variants where BOD5 
was determined exclusively on the basis of Q(t-1) and 
COD(t).

The data presented in Table 6 show that the lowest 
values of errors in the prediction of the technological 
parameters were found when the BOD5 value was a 
function of only the inflow rate Q(t-1). In two other 
cases, the results of MLSS and F/M simulations did not  
differ much. For instance, for the F/M prediction model 
based on BOD5 = f(Q(t-i)) (Eq. 3), mean error values were 
MAE = 0.027gBOD5/gMLSS·d and MAPE = 19.64%. For 
the model based on BOD5 = f(COD(t)) (Eq.5), errors were 
MAE = 0.033gBOD5/gMLSS·d and MAPE = 24.71%.

The computations performed for the study demonstrate 
that the data on influent wastewater flow rate obtained 
from the last measurements can be used to model the 
indicators of wastewater quality. That is confirmed by 
relevant prediction errors. Modelling provides a useful 
tool in practical applications. It allows predicting, in 
advance, the operational parameters of the aeration tanks. 
Their performance can be optimised using the variables 
measured online in the bioreactor, and the data on the flow 
rate of influent wastewater. 

Variables 
in the BOD 

models

MLSS F/M

MAE MAPE MAE MAPE

(kg/m3)  (%) (gBOD5/
gMLSS·d) (%) 

Q(t-i) 0.49 11.95 0.013 19.64

COD(t) 0.57 14.16 0.016 24.71

COD(t),Q(t) 0.55 13.9 0.015 21.71

Table 6. Parameters of fit of computations of the aeration tank 
technological parameters (MLSS and F/M) to the results of 
measurements.

Fig. 3. Comparison of the results of measurements and 
computations of the food-to-mass ratio (F/M) in the period of 
concern.

Fig. 2. Comparison of the results of measurements and 
computations of mixed-liquor suspended solids (MLSS) in the 
period of concern.

Wastewater quality 
indicators

ANN MARS

Training Testing Training Testing

MAE MAPE MAE MAPE MAE MAPE MAE MAPE

(mg/dm3)  (%) (mg/dm3)  (%) (mg/dm3)  (%) (mg/dm3)  (%)

BOD5 = f(Q(t-i)) 33.24 13.09 38.94 13.66 45 16.2 47.04 17.2

BOD5 = f(COD(t)) 52.58 18.28 54.93 19.84 62.14 22.34 62.89 22.95

BOD5 = f(COD(t),Q(t)) 43.52 13.82 44.4 15.9 51.26 17.33 57.74 19.49

COD 96.04 14.82 110.46 14.97 107.7 15.22 119.52 16.17

TSS 37.47 12.38 40.8 14.13 49.34 17.71 53.25 18.89

NH4
+ 2.82 5.59 3.05 6.23 4.25 8.67 4.35 8.94

TN 4.38 5.86 4.75 6.11 5.44 6.98 5.71 7.38

Table 5. Parameters of fit of wastewater quality indicator computations with ANN and MARS methods to the results of measurements.
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Conclusions

The modelling results show that the values of 
wastewater quality indicators, namely TN, NH4

+, and 
also BOD5, COD, and TSS can be determined on the 
basis of wastewater inflow values obtained, respectively, 
from the last two and three measurements. In the cases 
considered, the ANN method produced lower errors in 
the prediction of wastewater quality indicators and MLSS 
than the MARS-based models. MLSS computations were 
performed using the models that describe wastewater 
quality indicators, determined on the basis of inflow rate 
and bioreactor parameters. The results of simulations 
are in satisfactory congruence with measurement data. 
The results of simulations of wastewater  quantity and 
quality, and also of MLSS were used to predict F/M ratio.  
The models designed to that end produced compu- 
tational results that were congruent with measurements. 
That was confirmed by the values of mean absolute and 
relative errors. In the operation of treatment facilities, 
modelling makes it possible to reduce the costs of 
measurements of biogenic compounds in the influent. 
Additionally, the bioreactor parameters (RAS, WAS, pH, 
Tsl), measured online, can be forecast and controlled, which 
is necessary to ensure an adequate degree of pollutant 
reduction. Also, the performance of the wastewater 
treatment plant can be enhanced due to the control of F/M 
ratio.
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